
Chapter 4 
 

 

Determination of Local and Global Weights of Alternatives from 

Inconsistent Interval Judgment Matrices 
 

 

 

4.1 Introduction 

 

Saaty (1977a) proposes the entries of pairwise comparison matrices as single numbers, 

e.g., if one alternative is strongly preferred relative to another, then the ratio assigned is 5. 

But in the cases where fuzziness or randomness or any other kind of uncertainty is 

concerned, DM may prefer to provide his judgments by means of range of numbers based 

on the same (1/9-9) scale (Saaty and Vargas, 1987; Arbel, 1989; Salo, 1993). For 

example, in the foregoing case, the range may be [4,6] with midpoint 5 as the most 

probable value. But the problem is how to extract weights from such a set of responses. 

    Arbel (1989) formulated the problem of determination of weights from interval 

judgments as a linear programming problem (LPP). But the LP approach gives solution 

only when the matrices are consistent. Salo and Hämäläinen (1995) extended Arbel’s LP 

approach from one level of hierarchy to the entire hierarchy to obtain weight interval for 

each of the decision alternatives. By using LP approach, Salo (1993) determined weights 

of alternatives from inconsistent interval matrices by increasing the length of intervals. 

Saaty and Vargas (1987) introduced the notion of simulation in AHP to investigate the 

effect of uncertainty in judgments on the stability of rank order of alternatives. In this 

chapter, we determine the local as well as global weights of the alternatives by simulation 

technique based upon three different probability distributions, namely, uniform, truncated 

normal, and truncated gamma, where the comparison matrices are inconsistent and the 

elements of the matrices are presented in the form of closed intervals. Subsequently, the 

effect of these distributions on the two sets of weights is investigated by means of a 

statistical analysis.  

 

 

4.2 Interval Judgments 

 

The reasons for adopting interval judgments to construct pairwise comparison matrices in 

AHP may be summarized as: 

 

 probabilistic uncertainty in the decision making environment (Saaty and Vargas, 

1987), 

 

 fuzzy uncertainty in the decision making environment (fuzzy numbers can also be 

employed in this case) (Van Laarhoven and Pedrycz, 1983; Buckley, 1985), 

 

 incomplete information (Arbel, 1989; Arbel and Vargas, 1993), 



 

 group decision (Hämäläinen et al., 1992), 

 

 unfamiliarity with the decision making process, 

 

 to minimize preference elicitation time, 

 

 to avoid risk in giving point estimate in political decision making, and  

 

 unwillingness to specify point judgments due to any other reason. 

 

 

In the foregoing cases, a comparison matrix takes the form: 

 

 

 

 

 

 

 

 

    Where Oi, i = 1, 2,…, n, are the objects which are compared and lij   wi / wj   uij, i, j 

= 1, 2,…, n, w = T

nwww ),...,,( 21 being the weight vector. The respondent should fill up 

only the upper triangular part of (4.1). The lower triangular part is to be constructed by 
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    Note that due to the procedure of construction of (4.1), the relations lij lji < 1 and uij uji 

>1, hold for all i and j. 

 

Definition 4.1: The length of an interval [lij, uij] of the pairwise comparison matrix A΄ in 

(4.1) may be defined as: 

 

    ,ijij lu     when     1,1  ijij ul  

    ,11   ijij ul   when     1,1  ijij ul  

                 iju  + ,21 

ijl  when    1,1  ijij ul  

 

 

4.3 Determination of Weights from Interval Judgments by Simulation 

 

Usually, in the simulation approach, the weights are elicited from A΄ in (4.1) on replacing 

the intervals by means of random numbers, belonging to respective intervals, which 

follow a specific probability distribution. The transformed matrix is, in general, not a 

  O1 O2 O3  On  

 

                                  (4.1) 
 O1 1 [l12, u12] [l13, u13]  [l1n, u1n] 

A = O2  1 [l23, u23]  [l2n, u2n] 

           
  On     1 



consistent one. If it is a consistent matrix and X1, X2,…, Xn represent independent random 

variables for the components of weight vector, then the joint probability density function 

is given by 
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assuming the matrix entries are gamma distributed with parameters i  and i . By means 

of a suitable transformation, Vargas (1982) has reduced (4.2) to 
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Hence, the marginal distribution of (Y1, Y2,…, Yn-1) is  
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where 0 < Yk < 1, k = 1, 2,…, n-1, and .1
1

1






n

k kY  This shows that the marginal 

distribution of (Y1, Y2,…, Yn-1) follows a Dirichlet’s distribution with parameters 

,1 ,...,2 .n  It can be shown that the individual variable Yk, k = 1, 2,…, n-1, follows 

beta distribution with parameters (  

n

ik 1
, ).i  

    Khane (1975), in his pioneering work, stated that although the distribution of the 

random variable belonging to some interval is to be determined from the available data, 

but with a lack of sufficient information, one may assume that the interval [lij, uij] 

represents a grade somewhere between lij and uij, any number in that region being equally 

probable. In the same paper, he also mentioned that for some problems, normal or any 

other distribution might also be appropriate. But the question arises what will be the 

probability distribution of components of principal eigenvector when the matrix entries 

will follow truncated normal or any other truncated distribution. Analytical derivation of 

the distribution is a bit difficult due to the complexity of eigenvector calculation 

procedure. To investigate the effect of various probability distributions on the overall 

weights experimentally, three probability distributions, viz., uniform, truncated normal 

and truncated gamma, are considered in the simulation approach. For this purpose, we 

have considered a multi-criteria financial investment problem where the length of interval 

in each cell is unity. In order to observe the variation of the local as well as global 

weights of the alternatives (here portfolios), the computation has been repeated by 

successively increasing the common length of all the intervals from 1 through 5 units. 

Although, for complete uncertainty, the range is [1/9-9] (i.e., the length of interval is 16), 

according to the interpretation of the ratings of the (1/9-9) scale, the interval length 5 (for 

instance, [1,6], where 1 and 6, respectively, represent equal preference and more than 



strong preference) is large enough to capture DM’s wavering mind. Moreover, the 

weights for interval lengths more than 5 can be extrapolated from Table 4.2. In addition 

to this, Saaty and Vargas (1987, page 109) writes: “…large ambiguity in the judgment 

can render ranking a useless pursuit”. 

    In the uncertain environment, although DM may not be sure about a point judgment, 

his mind may, however, waver about that point. This very concept has been used in fuzzy 

AHP (see Van Laarhoven and Pedrycz, 1983). Following this trend of mind of the DM, in 

our experiment, we have considered middle points of the intervals as means of normal 

and gamma distributions. Further, the variance depends upon the decision maker’s 

perception about a particular problem. It is well known that variance of uniform 

distribution is .12/)( 2

ijij lu   In the present experiment, to compare the results with 

uniform distribution, same variance has been considered for normal and gamma 

distributions. 

    The algorithm in the computation is as follows: 

 

Step 1. Construct the hierarchy of the problem. 

Step 2. Construct the comparison matrices involving interval judgments. 

Step 3. Adopting a suitable random number generator, replace the intervals in step 2 by 

single numbers. 

Step 4. Using the eigenvector method, elicit local priority weights of the alternatives. 

Step 5. Repeat steps 3 and 4. After N (N>1000, say) such repetitions take simple average 

of the weights. 

Step 6. To estimate the global weights, use principle of hierarchical composition (Saaty, 

1977a). 

 

 

4.4 A Multiple Criteria Decision Making problem 

 

Suppose, a person is interested to invest his money in any one of the four portfolios: 

Bank Deposit (BD), Debentures (DB), Government Bond (GB), and Shares (SH). Out of 

these four portfolios, he has to choose only one based upon the criteria: Return (Re), Risk 

(Ri), Tax Benefits (Tb), and Liquidity (Li). This is a problem where uncertainty is 

inherently associated (Saaty, 1987a). The hierarchy of the problem is shown in Fig. 4.1.  

    The pairwise comparison matrices for all criteria as well as for all the alternatives are 

constructed in consultation with some experts whose major research area is Financial 

Management. The elements of the comparison matrices are shown in Table 4.1. 

    As mentioned in the foregoing algorithm, each interval is to be replaced by a single 

number, which lies within that interval. Here these numbers (which are random) have 

been generated by using the subroutines RNU, RNNOR, RNGAM from IMSL in 

CYBER 180/840A. The numbers in the lower triangular part of each matrix are the 

reciprocal of the corresponding numbers in the upper triangular part. The cells in the 

pairwise comparison matrices are not independent from each other, i.e., at the time of 

filling up the matrices, content of one cells depends upon the contents of other cells. In 

the present case, this dependence has already been taken into account at the time of filling 

up the matrices by means of range of numbers.  

 



  

 

 

 

 

 

    

 

 

 

 

      

 

 

 

 

  

 

 

     

 

 

FIG. 4.1: Hierarchy of the portfolio selection problem. 
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            Table 4.1: Pairwise comparison matrices of the portfolio selection problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Re Ri Tb Li 

Re 1 [3,4] [5,6] [6,7] 

Ri  1 [4,5] [5,6] 

Tb   1 [3,4] 

Li    1 

Re BD DB GB SH Ri BD DB GB SH 

BD 1 [1/4,1/3] [3/4] [1/6,1/5] BD 1 [3,4] [4,5] [6,7] 

DB  1 [6,7] [1/5,1/4] DB  1 [3,4] [5,6] 

GB   1 [1/7,1/6] GB   1 [4,5] 

SH    1 SH    1 

Choice of best portfolio 

Return Risk Tax benefits Liquidity 

Bank Deposit Debentures Government Bond Shares 



 

 

 

 

 

 

 

 

We follow the foregoing algorithm assuming at first uniform distribution for the random 

variable in each of the intervals of the five matrices in table 4.1. In order to observe the 

behavior of the components of eigenvector as well as the variation of the global weights 

of the alternatives, we perform the experiment by varying simulation run size from N = 

1000 through 5000. For the same purpose, the intervals have been changed to 

],5.0,5.0[  ijij ul ],0.1,0.1[  ijij ul  and ],0.2,0.2[  ijij ul  1, ijij ul , for all 

;1,...,2,1  ni  niij ,...,2,1   (for 1, ijij ul , changes are made in the 

denominators), where the respective lengths of the changed intervals are 2, 3, and 5 units, 

respectively. We then repeat the experiment for these three cases. Further, the entire 

experiment has been repeated by considering the probability distributions, namely, 

truncated normal and truncated gamma for the random variables. The weights of the 

criteria and overall weights of the four alternatives for all the cases are shown in Table 

4.2 and Table 4.3, respectively. 

 
 

Table 4.2: Relative weights of the criteria for various probability distributions and various simulation run sizes 

  Return  Risk 

Simulation 
Size Run 

Prob. Dist. Interval Length  Interval Length 

1 2 3 5 1 2 3 5 

1000 Uniform 0.5674 0.5663 0.5630 0.5561  0.2775 0.2773 0.2801 0.2830 

 T. Normal 0.5686 0.5674 0.5660 0.5552  0.2764 0.2771 0.2780 0.2858 
 T. Gamma 0.5681 0.5669 0.5632 0.5545  0.2768 0.2772 0.2794 0.2821 

           

           
2000 Uniform 0.5675 0.5651 0.5640 0.5533  0.2772 0.2785 0.2789 0.2855 

 T. Normal 0.5683 0.5666 0.5670 0.5589  0.2767 0.2777 0.2769 0.2819 

 T. Gamma 0.5680 0.5657 0.5631 0.5522  0.2767 0.2783 0.2792 0.2852 
           

           

3000 Uniform 0.5677 0.5664 0.5641 0.5534  0.2771 0.2776 0.2788 0.2849 
 T. Normal 0.5683 0.5674 0.5656 0.5581  0.2767 0.2771 0.2789 0.2824 

 T. Gamma 0.5680 0.5660 0.5631 0.5530  0.2768 0.2779 0.2794 0.2848 

           
           

4000 Uniform 0.5681 0.5666 0.5638 0.5545  0.2766 0.2776 0.2791 0.2845 

 T. Normal 0.5683 0.5666 0.5658 0.5590  0.2767 0.2777 0.2780 0.2821 
 T. Gamma 0.5678 0.5659 0.5631 0.5539  0.2770 0.2780 0.2793 0.2835 

           

           
5000 Uniform 0.5677 0.5663 0.5642 0.5553  0.2770 0.2777 0.2790 0.2829 

 T. Normal 0.5680 0.5673 0.5646 0.5591  0.2768 0.2771 0.2791 0.2819 

 T. Gamma 0.5678 0.5662 0.5628 0.5516  0.2770 0.2778 0.2797 0.2855 

 

 

 
 

 

 
 

Tb BD DB GB SH Li BD DB GB SH 

BD 1 1 [1/6,1/5] [1/4,1/3] BD 1 [3,4] 6 [6,7] 

DB  1 [1/6,1/5] [1/4,1/3] DB  1 [3,4] [3,4] 

GB   1 [4,5] GB   1 [3,4] 

SH    1 SH    1 



 

Table 4.2 continued 

  Tax Benefits  Liquidity 

Simulation 

Size Run 

Prob. Dist. Interval Length  Interval Length 

1 2 3 5 1 2 3 5 

1000 Uniform 0.1041 0.1050 0.1052 0.1069  0.0510 0.0513 0.0517 0.0540 
 T. Normal 0.1040 0.1041 0.1045 0.1059  0.0511 0.0513 0.0515 0.0531 

 T. Gamma 0.1041 0.1045 0.1051 0.1081  0.0511 0.0514 0.0523 0.0552 

           
           

2000 Uniform 0.1043 0.1050 0.1052 0.1068  0.0510 0.0514 0.0520 0.0544 

 T. Normal 0.1041 0.1044 0.1046 0.1061  0.0509 0.0512 0.0516 0.0531 
 T. Gamma 0.1044 0.1045 0.1055 0.1077  0.0510 0.0515 0.0523 0.0549 

           

           
3000 Uniform 0.1042 0.1046 0.1052 0.1073  0.0510 0.0514 0.0519 0.0545 

 T. Normal 0.1041 0.1044 0.1047 0.1067  0.0509 0.0512 0.0516 0.0528 

 T. Gamma 0.1041 0.1047 0.1052 0.1076  0.0510 0.0515 0.0522 0.0548 

           

           

4000 Uniform 0.1042 0.1045 0.1051 0.1069  0.0510 0.0513 0.0519 0.0540 
 T. Normal 0.1041 0.1046 0.1048 0.1060  0.0509 0.0511 0.0514 0.0529 

 T. Gamma 0.1042 0.1047 0.1053 0.1076  0.0510 0.0514 0.0523 0.0550 

           
           

5000 Uniform 0.1043 0.1047 0.1048 0.1073  0.0510 0.0513 0.0519 0.0545 
 T. Normal 0.1042 0.1040 0.1047 0.1061  0.0509 0.0512 0.0516 0.0530 

 T. Gamma 0.1041 0.1045 0.1053 0.1078  0.0510 0.0515 0.0522 0.0550 

 

 
Table 4.3: Relative weights of the alternatives for various probability distributions and various simulation run sizes 

  Bank Deposits  Debentures 

Simulation 

Size Run 

Prob. Dist. Interval Length  Interval Length 

1 2 3 5 1 2 3 5 

1000 Uniform 0.2521 0.2518 0.2537 0.2543  0.2346 0.2350 0.2353 0.2343 

 T. Normal 0.2520 0.2519 0.2526 0.2553  0.2345 0.2350 0.2355 0.2370 

 T. Gamma 0.2520 0.2522 0.2527 0.2536  0.2340 0.2341 0.2350 0.2365 
           

           

2000 Uniform 0.2521 0.2526 0.2531 0.2563  0.2343 0.2350 0.2353 0.2371 
 T. Normal 0.2519 0.2527 0.2517 0.2545  0.2342 0.2346 0.2350 0.2369 

 T. Gamma 0.2518 0.2526 0.2529 0.2555  0.2340 0.2347 0.2348 0.2376 

           
           

3000 Uniform 0.2522 0.2521 0.2527 0.2556  0.2340 0.2347 0.2353 0.2381 

 T. Normal 0.2519 0.2519 0.2525 0.2542  0.2341 0.2343 0.2349 0.2363 
 T. Gamma 0.2519 0.2525 0.2531 0.2550  0.2341 0.2344 0.2352 0.2375 

           

           
4000 Uniform 0.2518 0.2523 0.2528 0.2552  0.2343 0.2346 0.2354 0.2375 

 T. Normal 0.2519 0.2523 0.2526 0.2546  0.2341 0.2344 0.2345 0.2359 

 T. Gamma 0.2520 0.2524 0.2532 0.2554  0.2341 0.2342 0.2354 0.2371 
           

           

5000 Uniform 0.2520 0.2523 0.2531 0.2542  0.2341 0.2346 0.2352 0.2379 

 T. Normal 0.2519 0.2520 0.2528 0.2540  0.2341 0.2344 0.2349 0.2370 

 T. Gamma 0.2519 0.2525 0.2534 0.2557  0.2342 0.2344 0.2353 0.2378 

 
 

 

 
 

 

 
 

 

 
 

 



Table 4.3 continued 

  Government Bond  Shares 

Simulation 
Size Run 

Prob. Dist. Interval Length  Interval Length 

1 2 3 5 1 2 3 5 

1000 Uniform 0.1323 0.1331 0.1337 0.1371  0.3810 0.3800 0.3774 0.3715 

 T. Normal 0.1321 0.1327 0.1328 0.1361  0.3814 0.3804 0.3791 0.3716 
 T. Gamma 0.1324 0.1331 0.1345 0.1380  0.3817 0.3805 0.3778 0.3718 

           

           
2000 Uniform 0.1325 0.1334 0.1340 0.1374  0.3811 0.3798 0.3778 0.3691 

 T. Normal 0.1323 0.1327 0.1330 0.1354  0.3815 0.3800 0.3803 0.3733 

 T. Gamma 0.1326 0.1331 0.1344 0.1382  0.3817 0.3794 0.3780 0.3688 
           

           

3000 Uniform 0.1323 0.1330 0.1340 0.1372  0.3814 0.3771 0.3780 0.3691 
 T. Normal 0.1323 0.1327 0.1333 0.1358  0.3816 0.3811 0.3793 0.3737 

 T. Gamma 0.1325 0.1330 0.1343 0.1382  0.3815 0.3801 0.3772 0.3694 

           

           

4000 Uniform 0.1324 0.1329 0.1339 0.1374  0.3814 0.3803 0.3779 0.3695 

 T. Normal 0.1323 0.1328 0.1332 0.1353  0.3817 0.3805 0.3797 0.3742 
 T. Gamma 0.1325 0.1332 0.1343 0.1383  0.3814 0.3802 0.3771 0.3692 

           

           
5000 Uniform 0.1325 0.1331 0.1337 0.1373  0.3813 0.3800 0.3779 0.3707 

 T. Normal 0.1323 0.1327 0.1334 0.1354  0.3815 0.3808 0.3790 0.3737 
 T. Gamma 0.1324 0.1331 0.1342 0.1384  0.3814 0.3800 0.3771 0.3680 

 

 

 
 

4.5 A Statistical Analysis of the Results 

 

In this section, we statistically investigate the effects of various probability distributions, 

various interval lengths, and various simulation run sizes on the local (Table 4.2) and 

global (Table 4.3) set of weights. It is worth mentioning that the problem of investigation 

by pure mathematical or analytical approach is intractable (Vargas, 1982; Saaty and 

Vargas, 1987; Jimenez and Vargas, 1993). Empirical investigation is the only way left 

before us. 

    It is to be noted that by virtue of the Central Limit Theorem, the weights computed by 

the algorithm of the previous section follow normal distribution. To test the significance 

of difference among various levels of the three factors, namely, distribution, interval 

length and simulation run size, we perform a 3-way Analysis of Variance taking all the 

interaction terms into account. The analysis has been carried out for the data in both 

Table 4.2 and Table 4.3. But we provide the F-ratios in Table 4.4 for various cases with 

respect to the data in Table 4.2 only. 

    We note that for all the criteria there is a significant difference among various 

distributions and interval lengths, whereas simulation run sizes are not significantly 

different. Exactly similar analysis follows for data in Table 4.3; but in this case, it is 

observed that the magnitudes of the F-ratios have been decreased. 

    It was stated previously that truncated normal random numbers were generated 

considering middle points of intervals as means with some common variance. For normal 

distribution, the average of large number of sample points tends to its mean. So, by virtue 

of the property of stability of eigenvector components, the two sets of weights obtained 

by using normal distribution and replacing the intervals by means of their respective mid 

points should be close to each other. This is obvious from the weights of the four 



portfolios: Bank Deposit, Debentures, Government Bond, and Shares, viz., 0.2519, 

0.2340, 0.1323, and 0.3819, respectively, obtained by replacing the intervals by means of 

their respective mid-points and the corresponding weights 0.2519, 0.2343, 0.1327, and 

0.3811 obtained by using normal distribution as shown in Table 4.3 (for interval length 2 

and simulation run size 3000). 

 
Table 4.4: F-ratios for the three factors with respect to the criteria matrix 

Criteria Factor Computed F-ratio Tabulated F-ratio (5%) 

Return Distribution         36.11 3.40 
 Interval length      626.83 3.01 

 Simulation run size         0.23 2.78 

Risk Distribution          5.96 3.40 
 Interval length     177.84 3.01 

 Simulation run size         0.09 2.78 

Tax benefits Distribution        58.64 3.40 

 Interval length     658.02 3.01 

 Simulation run size         0.61 2.78 

Liquidity Distribution     270.33 3.40 

 Interval length  2637.36 3.01 
 Simulation run size      1.34 2.78 

   

 

Remark 4.1: While generating random numbers in the experiment, for simplicity, same 

probability distribution has been assumed for all the cells of a pairwise comparison 

matrix. Of course, in reality, this may not necessarily be true. In some interval it may be 

uniform, in another it may be any other distribution. 

 

 

4.6 Concluding Remarks 

 

Articulation of interval judgments is a flexible way to express one’s preference strength 

in an uncertain environment. A simulation experiment has been performed to investigate 

the effect of various probability distributions for the random variables belonging to the 

interval judgments on the local as well as global sets of weights of the alternatives. 

Gradual increment in the interval length and simulation run size has been made to study 

the behavior of the varied weights. A detailed statistical analysis of the two sets of 

weights shows significant difference among various distributions and various interval 

lengths and insignificant difference in various simulation run sizes. Lastly, we emphasize 

that the conclusions, which have been drawn from the experiment involving only four 

criteria and four alternatives, are independent of the size of comparison matrices. 


