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Chapter 2 
 

 

Determination of Weights From Pairwise Comparison Matrices in Analytic 

Hierarchy Process: A Fuzzy Programming Approach 
 

 

 

2.1 Introduction 

 

In real world, several decision making problems do incorporate uncertainties. These 

uncertainties can be broadly classified into two categories: probabilistic uncertainty and 

fuzzy uncertainty. Apart from these uncertainties, it is also recognized that most of the 

decision making problems involve multiple criteria and some of these criteria may be 

subjective or fuzzy in nature. The classical theory of probability is not sufficient to solve 

problems involving fuzzy uncertainty. 

    The Analytic Hierarchy Process (AHP) is a useful technique to deal with fuzzy criteria in 

solving discrete multiple criteria decision making (MCDM) problems (Saaty, 1978). 

Formation of pairwise comparison matrices and determination of relative weights of objects 

from them are the most important aspects of AHP. In the next section, we shall discuss 

various types of pairwise comparison matrices and their corresponding weight determination 

techniques. 

 

 

2.2 Various Types of Comparison Matrices and Corresponding Weight 

Determination Techniques 

 

To determine relative weights of n objects in the framework of AHP, one first constructs 

pairwise comparison matrices of the form: 

 

 

 

 

 

 

 

 

where 1,,...,2,1,,/  iijiij anjiwwa  and ,,...,2,1,' niswi   are the underlying relative 

weights of the n objects iO . Here, different cases arise in articulating the preference ratios, 

ija ’s, depending upon the decision making environment. 

 

Case 1   ija ’s are crisp numbers such as 5 or 1/3 taken from the (1/9-9) scale. This is the     

usual practice in AHP. 

  O1 O2  On  

 

                                          (2.1) 
 O1 a11 a12  a1n 

A  = O2 a21 a22  a2n 

          
  On an1 an2  ann 



hgjjha 

Case 2  ija ’s are fuzzy numbers such as (4, 5, 6) or (3, 4, 5, 6) with triangular or trapezoidal 

membership functions, respectively. 

Case 3  ija ’s are intervals of numbers such as [2, 5], [1/3, 4], or [1/4, ½]. The end points of 

the intervals are taken from the same (1/9-9) scale. 

Case 4   ija ’s are sets of points such as }3{ xxaij  or }7{  xxaij .  

Case 5    ija ’s are approximate numbers such as .2/15  or   

 

    As described in Chapter 1, there are mainly three methods to determine weights from 

comparison matrices in Case 1, namely eigenvector method (EM) (Saaty, 1977a), least 

squares method (LSM) (Jensen, 1984), and logarithmic least squares method (LLSM) 

(Crawford and Williams, 1985). For fuzzy matrices in Case 2, Van Laarhoven and Pedrycz 

(1983) used logarithmic least squares method to elicit weights. They adopted fuzzy numbers 

with triangular membership functions. Using fuzzy numbers with trapezoidal membership 

functions, Buckley (1985) used geometric mean method to elicit fuzzy weights. Arbel (1989) 

and Arbel and Vargas (1993) introduced Linear Programming (LP) approach in the AHP. 

They used LP method to extract weights from interval judgments as in Case 3, although the 

LP approach fails to find weights from inconsistent interval judgments. LP method can also 

be used to determine weights from comparison matrices where the elements ija  are stated as 

in Case 4. But there does not exist any method for determination of weights from pairwise 

comparison matrices whose elements are appropriately articulated as in Case 5. In this 

chapter, a Fuzzy Programming method is presented to determine weights from appropriate 

comparison matrices. 

 

 

2.3 Formulation of Fuzzy Programming as a Weight Determination Technique 

 

To determine weights from appropriate pairwise comparison matrices, two different fuzzy 

programming methods are developed. 

 

Method 1: Let us consider the relations 

 

)2.2(,1,/ jiandjiallforaaww ijijji 

 

Now two cases may arise. In one case, the decision maker (DM) may be satisfied with 

‘small’ deviations on both sides from ija . If this is the case, then the Relations (2.2) become 

 
jiandjiallforapaww ijijijji  ,1,/  

 

where ijp ’s are subjectively chosen constants, called tolerance limits. In another case, DM 

may prefer small deviation only on one side from ija , i.e., in this case, either  

 

ijijjiijijji pawworpaww  //  

Considering the former case, we have 
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)3.2(1)/()(  jijjiji wpwaw  

 

Each of the constraints of type (2.2) shall now be represented as a fuzzy set, for which the 

membership function of ija  is  
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For minus sign of jij wp  in Equation (2.3), the signs of iw  and jw  will just be interchanged. 

The membership function )(wij  can be interpreted as the degree to which the fuzzy 

equality ijji aww /  is satisfied. 

    Now let us define )1( ijaijA  for nijni ,...,1;1,...,2,1   (assuming ).1ija  

Hence, .jijiij wawwA   Therefore, from the foregoing discussion we can write 
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Following Bellman and Zadeh (1970), the membership function of the fuzzy set “decision” is 

given by 
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Let us assume that the DM is interested for a decision not in a fuzzy set but a crisp optimal 

compromise solution. The objective is to find the maximizing solution which minimizes the 

deviations from the articulated values. Therefore, the solution is given by 

 

 

    Introducing an augmented variable  which is the minimum of all ij ’s in (2.4), we 

arrive at the following non-linear programming problem: 
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 Maximize      

 subject to        jijjij wpwp  )( wAij  
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Remark 2.1: In the foregoing formulation, we considered only the upper triangular part of 

the comparison matrix. As stated in Section 2.2, the lower triangular part is just the 

reciprocals of the corresponding elements in the upper part. So, no additional information is 

provided by the elements in the lower triangular part. In addition to this, we have assumed 

that all the ija ’s elements in Method 1 are greater than or equal to 1. If some ija ’s elements 

in the upper triangular part are less than 1, then, for convenience of specifying ijp  values, the 

variables iw  and jw  may be interchanged after taking reciprocals of ija ’s. 

 

Method 2: Although subjective quantities ijp  can be chosen in Method 1 with ease, the 

decision maker has to solve a non-linear programming problem. In addition to this, for small 

values of ijp , one may not get a positive value of .  

 The relation ijji aww /  may also be viewed as 0 jiji waw . Now the decision 

maker may accept the solution when 0,  ijijjiji ppwaw  being a very small quantity, 

preferably less than 0.10. Then, proceeding as in Method 1, in the present case, we have the 

following fuzzy linear programming problem: 

 

 Maximize   

 subject to  ijij pp  )( wAij  
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Remark 2.2: Knowing the ijp  value in Method 1 for some constraint, it is not possible to 

find the corresponding value in Method 2 for the same constraint, because of the variable jw . 

 

2.4 Numerical Examples 

 

Example 2.1: Let us consider the following approximate pairwise comparison matrix: 
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     It is to be noted that no judgment is available for cell a13. For cells a15 and a34, two 

judgments are available. Cells a23 and a35 have exact numbers. Interval judgment is 

considered for the element a45. 

    The non-linear programming formulation of the foregoing weight determination problem 

is as follows: 
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From the above formulation (assuming all the tolerance limits pij’s for the approximate 

numbers as 1.25), we determine weights of the five objects by using the non-linear 

programming package GINO. The same weight determination problem has been formulated 
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as a linear programming problem and solved by using the linear programming package 

LINDO. The two sets of weights are shown in Table 2.1. 

 

 

                Table 2.1: Relative weights of the five objects in Example 2.1. 

Method 
1w  2w  3w  

 

4w  5w  ijp    

Method 1 0.4729 0.0846 0.2594 0.0945 0.0846 1.25 0.200 

Method 2 0.4527 0.0827 0.2481 0.1338 0.0827 0.10 0.173 

 

 

Example 2.2: 

 

 

 

 

 

 

 

 

 

In this example, we assume that all the preference strengths are articulated by exact numbers. 

The consistency ratio (C.R.) of the matrix is 0.088. Although this much inconsistency is 

allowed, but still the comparison matrix is inconsistent. So, it is impossible to satisfy all the 

constraints of type ./ jiij wwa   Therefore, some deviations from the entries should be 

tolerated. Unlike the existing methods, in fuzzy programming method, DM has the advantage 

to specify the tolerance limits for violations of each (or some) of the constraints. The weights 

of the objects determined by Method 1 and Method 2 are shown in Table 2.2. 

 

Table 2.2: Relative weights of the four objects in Example 2.2. 

Method 
1w  2w  3w  

 

4w  ijp    

Method 1 0.4326 0.3709 0.0543 0.1421 * 0.0778 

Method 2 0.4358 0.3846 0.0512 0.1282 0.10 0.2307 

            * p12 = 0.5, p13 = 1.5, others = 1.2 

 

For simplicity, same tolerance limits are assumed for all the constraints in Example 2.1 and 

most of the constraints in Example 2.2. Actually, it depends on how much the DM can 

deviate from his/her own preference strengths. In case the DM does not want to go beyond 

some specified tolerance limits, but still the value of   is zero, then he/she must decrease the 

inconsistencies among the entries of the matrix. (The algorithm presented in the Chapter 5 

may be used to decrease inconsistencies).  

 

Remark 2.3: The closer the value of   to 1, the more is the degree of satisfaction for all the 

constraints. To get higher value of   from some lower positive value, DM has to increase 

 O1 O2 O3 O4 

O1 1 1 7 4 

O2  1 6 3 

O3   1 1/4 

O4    1 



chapter 2 

   

the lengths of tolerance intervals. But the DM may accept the solution corresponding to 

lower positive value of   (as in Table 2.2) satisfying all his/her articulated preference 

strengths.  

 

 

2.5 Performance of Fuzzy Programming Method (FPM) on Various Criteria 

 

Jensen (1989) has identified seven potential criteria to evaluate performance of various 

weight determination techniques. We will discuss them briefly to evaluate performance of 

FPM. 

 

2.5.1 Element Preference Reversal (EPR) 

 

Consider any element )1(1  oraij in a comparison matrix. If for the estimated weights 

iw  and ),1(1/,  orwwuw jiijj then we say that element preference reversal has taken 

place. 

    For a considerably inconsistent matrix, EPR can never be avoided by any weight 

estimation technique. But Jensen (1989) has commented that eigenvector method minimizes 

the cardinal magnitudes of such reversals. After the development of FPM his statement does 

not appear to be true. Let us consider the same example adopted by Jensen (1989, page 6): 

 

 

 

 

 

 

 

 

 

 

 

It is to be noted that EPR has been transpired in EM for .12a  But FPM not only preserves the 

preference, but in this case 76.011.1/ 21 ww . 

    Actually, EM is designed to preserve ordinal ranking, and in this respect, according to 

Jensen (1989), it outperforms other existing methods. Let us consider the following highly 

inconsistent matrix with C.R. = 0.896 adopted by Saaty and Vargas (1984b): 

 

 

 

 

 

 

 

 

 

 O1 O2 O3  O1 O2 O3  O1 O2 O3 

O1 1 2 1 O1 1 0.76 2.62 O1 1 1.11 5.25 

O2  1 9 O2  1 3.43 O2  1 4.75 

O3   1 O3   1 O3   1 

Comparison 

matrix 

 Matrix obtained from 

EM solution 

 Matrix obtained from  

FPM solution (Method 2) 

 O1 O2 O3 O4 

O1 1 4 ½ 1/5 

O2  1 1/3 4 

O3   1 ½ 

O4    1 
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    For this example, the weight vectors obtained by EM and FPM are respectively, (0.214, 

0.245, 0.242, 0.299) and (0.340, 0.164, 0.376, 0.120). Even for this highly inconsistent 

matrix, we observe that the number of EPRs is the same in EM and FPM (both = 2). Based 

upon the results of the previous two examples, it can be said that FPM is better in the sense 

of minimization of EPRs.  

 

 

2.5.2 Moderate Rank Preference Reversal (MRPR) 

 

Let us assume, for any pairwise comparison matrix (PCM), 11  ijij aandja  for at 

least one j. Now if the estimated weights ji wandw are such that jw > iw for some j ,i then 

this indicates moderate rank preference reversal.  

  

    Let us consider the matrix (Jensen, 1989, page 7): 

  

 

 

 

 

 

 

 

 

 

 

     It is to be noted that ja1 >1 for j = 2, 3, 4, 5, i.e., 1w  should be greater than jw , j = 2, 3, 4, 

5. The weights of the objects ,5,4,3,2,1, iOi  calculated by various methods, are shown in 

Table 2.3. 

 

Table 2.3: Weights of the five objects calculated by various methods 

Methods 
1w  2w  3w  

 

4w  5w  

EM 0.300 0.472 0.076 0.076 0.076 

LLSM 0.261 0.487 0.084 0.084 0.084 

LSM 0.200 0.596 0.068 0.068 0.068 

FPM 0.428 0.357 0.071 0.071 0.071 

 

    From Table 2.3, we note that w2 > w1 for the first three existing methods. That’s why 

Jensen (1989) concluded that “moderate rank preference reversals are frequently impossible 

to avoid…” It is worth noting that only FPM avoids the MRPR. So, MRPR can be avoided 

and this can only be achieved by FPM. 

 

 

 

 O1 O2 O3 O4 O5 

O1 1 2 2 2 2 

O2  1 9 9 9 

O3   1 1 1 

O4    1 1 

O5     1 
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2.5.3 Weak Rank Preference Reversal (WRPR) 

 

Let us assume that, for any PCM, some jkik aa  but other ,jkik aa   for some particular i 

and j and k = 1, 2, …, n. In this case, we say that the ith row is weakly dominant over the jth 

row. Now, if the estimated weights wi and wj are such that wj > wi, then we say that weak 

rank preference reversal has occurred. 

    Like EM and unlike LSM, FPM avoids WRPR. This may be verified by taking the same 

example adopted by Jensen (1989, page 8). 

 

 

2.5.4 Strong Rank Preference Reversal 

 

If for any PCM, jkik aa   for some particular i and j and all k, then we say that the ith row 

has strong preference over the jth row. 

    It is fairly easy to verify that all the existing methods including FPM avoid strong rank 

preference reversal. 

 

 

2.5.5 Row (Column) Permutation Invariance 

 

A weight determination method is called row (column) permutation invariant, if the weight 

(determined by the concerned method) of a particular object Oi, i = 1, 2, …, n, remains 

invariant under any permutation of the objects (Jensen, 1989). All the additive error models 

including the FPM are row (column) permutation invariant. 

 

 

2.5.6 Inverse Reciprocity Property 

 

The element aij denotes the extent to which object Oi is better than object Oj. Therefore, the 

elements jiijij aab  /1  will denote the extent to which object Oi is worse than object Oj. 

Now the weights associated with B = [bij] should be the reciprocals of the corresponding 

weights associated with A = [aij]. This is called inverse reciprocity property. It may be 

recalled that, in our fuzzy programming method, we have considered only the upper 

triangular part of PCM and all the technological coefficients in the formulation of fuzzy 

programming method in Section 2.3 are considered greater than or equal to 1 just for 

convenience to provide the tolerance limits pij’s. Now in the dual case, difficulties arise 

providing pij values because here all the technological coefficients are less than 1. Even if 

DM provides pij values, those may not match with the corresponding pij values in the primal 

case. So FPM, in general, fails to preserve inverse reciprocity property. 

 

 

2.5.6 Response Bound Violation (RBV) 

 

As mentioned in Section 2.2, the responses are provided by taking discrete points from 

Saaty’s (1/9-9) scale. After estimating weights and taking their pairwise ratios, it may be 
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observed that some ratios violate the upper bound 9 (or lower bound 1/9) of the scale. This 

phenomenon is known as response bound violation. 

    To discuss RBV, Jensen (1989, page 14) has considered the wealth nation comparison 

matrix originally adopted by Saaty and Khouja (1976). For this matrix, the ratios of w1 and 

w3 determined by EM, LSM, and FPM are, respectively, 20.43, 10.70, and 11.68 where 

original response is a13 = 9. So EM suffers badly on RBV, whereas LSM not only gives 

minimum number of RBVs, but also minimizes the magnitudes of surrogate ratios. Our FPM 

remains close to LSM with respect to this criterion. 

 

 

2.6 Advantages and Disadvantages of Fuzzy Programming Method as a Weight 

Determination Technique 

 

i) While eliciting preference responses, DM may not be certain about all the 

comparisons. One should not force DM to give his/her preference strength as a crisp 

or exact number in an uncertain case, rather he/she can state that by means of an 

approximate number. FPM can be conveniently used to determine the weights of 

alternatives from such approximate matrices. 

 

ii) In the AHP framework, all the constraints are of the type 

 

jiwaw jiji ,0  . 

  

 In the language of Zimmermann (1985, page 221) 

 “The   sign might not be meant in the strictly mathematical sense, but smaller 

violations might well be acceptable. This can happen if the constraints represent 

sensory requirements (taste, color, smell, etc.) which cannot adequately be 

approximated by a crisp constraint.” 

 

In AHP, the foregoing ‘ ’ sign should be read as ‘=’ sign. No existing method except 

FPM considers the aforementioned flexibility regarding constraint satisfaction. 

 

iii) It is already mentioned that, in fuzzy situations, DM may state his/her preferences 

either by fuzzy numbers or by approximate numbers. If he/she uses fuzzy numbers, 

then the overall scores of the alternatives will also be fuzzy. So, one needs the 

ranking of these fuzzy numbers, which itself is a complex problem (Bortolan and 

Degani, 1985). Also clearcut ranking is not possible for fuzzy scores. In fuzzy 

ranking, some alternative is superior to some extent, beyond which that alternative 

ceases to be superior. By means of FPM, however, we obtain clearcut ranking of all 

the alternatives. 

 

iv) Several types of constraints can be considered in fuzzy programming approach, viz., 

rigid constraints, flexible constraints, constraints obtained from interval judgments, 

etc. 
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v) Missing judgments can obviously be handled by fuzzy programming method. 

Multiple judgments can be aggregated as an interval judgment; alternatively Saaty’s 

(1989) geometric mean procedure can be used. 

 

vi) Sensitivity analysis can easily be done in FPM. 

 

vii) As mentioned in Section 2.5, FPM is the only method by which one can avoid 

‘moderate rank preference reversal’.  

 

Despite the aforementioned advantages, FPM has some disadvantages too. 

i) Specification of tolerance limits (pij values) may be extra burden to the DM in 

addition to the task of filling up the requisite number of comparison matrices. 

ii) DM may not get positive value of   or rather feasible solution of the problem, 

even after specification of pij values. To get positive value of  , DM may need to  

increase of the length of tolerance intervals further, which he/she may not want to. 

In this case, FPM fails to determine weights. 

 

 

2.7 Concluding Remarks 

 

While comparing two alternatives with respect to some highly subjective criteria such as 

attractiveness, taste, comfort, etc., DM may not be fully confident about the choice of a 

discrete point from the (1/9-9) scale. In fact, in this case, preference strengths cannot be 

adequately expressed by means of exact numbers; rather, it may be easier for DM to state 

his/her preference strengths by means of approximate numbers. Of course, if DM feels 

certain about some particular comparison, then he/she should state that preference strength 

by exact number. Even after stating preference ratios by exact numbers, in some cases, DM 

may be satisfied with small deviations from their stated ratios. In such cases, we have shown 

how fuzzy programming technique can be used to determine weights of objects from 

comparison matrices. One may choose either Method 1 or Method 2 according to his/her 

convenience. The weight determination problem formulated in Method 1 and 2 can also be 

solved by linear programming method (Arbel, 1989), because after specifying the tolerance 

limits every entry becomes an interval judgment provided the converted interval matrix is 

consistent. However, the objectives of FPM and LP methods are just opposite to each other; 

FPM tries to minimize the deviations from the articulated ratios, whereas, LP method finds 

out solutions ranging over the whole interval. 


